
Performing Data Surgery
By Jerry Peek

POWER TOOLS

2 October 2004 Linux Magazine www.linuxmagazine.com

Ayear ago, the November 2003 “Power Tools” column (avail-
able online at http://www.linux-mag.com/2003-11/power

_01.html) looked into some lesser-known tools for editing
text: the line editors ex and ed, and the stream editor sed.

This month, let’s dig deeper and see some uses for the almost-
unknown utility dd — which has many more uses than just
reading data from magnetic tapes (one of its most common
uses in years past). On the way, we’ll touch upon the better-
known editing utilities head and tail, the “octal dump” utility
od, the /dev/random device, and more.

Ready?

Data Is Just Data

Let’s start by looking at a common way that Linux handles data.
In general, no matter where Linux data comes from — a disk,

a network, a tape, or whatever — it’s just a sequence of bytes.
That means that you usually don’t need to be concerned about
how to read from a disk or how to write to a tape. You simply
read or write a sequence of bytes, and the device driver does the
translation to the device’s internal format — disk blocks, net-
work packets, and so on. (However, there are times when it helps
to know the block size of a device, and we’ll see some of those.)

There’s just one data format issue that most everyone needs
to understand: the difference between line-structured data and
so-called binary data.

In line-structured data, a “line” is a sequence of characters
(bytes) followed by a newline character. (Many program-
ming languages represent a newline character as the two-
character sequence \n, but it’s actually stored in a data
stream as a single character.)

So, for example, when the head utility gives you the first ten
lines of a file, it reads a series of bytes from the file until it’s
seen ten newline characters, then it stops reading. It may do
this, for instance, by making ten calls to a library routine that
knows how to read a single line of text from a stream of bytes.
You can find a text file in the sidebar “What’s In That File?”

Binary data is basically anything that’s not line-structured.
It’s simply a series of bytes. It may have internal structure —
for instance, many types of data files start with a special
sequence of characters to identify it — but there’s no Linux-
imposed “file type” to tell you how the data is structured.

As mentioned above, data can come from a network con-
nection, from a pipe, from a keyboard, and so on. If the data
is in a disk file, someone may have given the file a name end-
ing with a dot and some more characters that identify what’s
in the file. For instance, .txt for text files and .jpg for JPEG

image files. And some applications may require that you fol-
low that convention. But, in general, Linux doesn’t care: it
just handles a sequence of bytes.

Just a Little Data, Please

If you read a file with a utility like cat or you use the shell’s
redirection operators (|, < and >) to send data from one
device or application to another, you generally get all of the
data at once unless you limit it somehow.

If you want to see just the first few lines of a text file or
files — to find out what’s in them, for instance — the head
utility can do the job. By default, head shows the first ten
lines of each file (with a brief header before each file if
there’s more than one). You can adjust this, say, to get a cer-
tain number of bytes instead of lines, with command-line
options. The syntax for head varies, system to system, so see
man head for details. A similar utility named tail shows the
last lines of a file, and most of its versions also handle multi-
ple files.

Like well-behaved Linux utilities, both head and tail read
standard input if you don’t specify a filename. This lets you
use them in a setup like the next example.

% prog || tteeee pprroogg..oouutt || ttaaiill

...last ten lines of prog output...

The prog output goes to tee, which writes all of the data into
a file named prog.out and also sends the data down a pipe to
tail, which shows the last ten lines of data from prog just after
it finishes:

head and tail work well with text files, but using the utili-
ties with arbitrary files can be problematic. If head or tail out-
put non-text data to a terminal, you may see garbage, and
the data could also corrupt your display. To avoid this prob-
lem, you can filter the output by piping it through a pager
utility like less, which displays non-printable characters safe-
ly. You can also pipe the data to cat with its –v option. That
displays control characters (except linefeed and tab) as a
two-character string like ^X, and other non-ASCII charac-
ters (with their high bit set) as M– followed by the value of
the other seven bits.

Chunking Data, Part I

Let’s see how to write a long stream of data from (for instance)
a pipe or a single file into a series of shorter files.

One way uses split. This simple utility reads data and writes
it as many fixed-size files as necessary. It fills one file after
another until all input data has been read (and written). It’s
handy, for instance, when you have a long file that you want
to transmit over an unreliable network connection — where
(unlike modern FTP) the transfer protocol can’t resume an
interrupted transfer — so any transmission problem means
re-transmitting the whole file from the beginning. In that case,
it’s best to break the huge file into smaller chunks, send the
chunks one-by-one (retransmitting any that fail), then re-
assemble the transmitted chunks into the complete file.

Here’s an example. At your office, you have the 100 MB
bigfile.tar.gz. You want to split it into one hundred 1 MB files
for downloading, via dialup modem, from your home com-
puter. You give the command:

office$ sspplliitt ––bb 11mm bbiiggffiillee..ttaarr..ggzz

Now you have one hundred 1 MB files named (by default)
xaa, xab, xac, ... xdu, and xdv. You transmit them to your
home system. At home, you reassemble the one hundred
files, using shell wildcard operators to match all of the three-
character filenames in alphabetical order, as in:

home% ccaatt xx[[aa––dd]]?? >> bbiiggffiillee..ttaarr..ggzz

It’s best to use a utility like md5sum or sum to be sure that the
reassembled bigfile.tar.gz is identical to the original.

Data Dumping with dd

dd does low-level data transfer, byte-by-byte or block-by-block,
with adjustable block sizes. It can also skip specified numbers of
blocks in the input and/or output files, as well as converting data
formats. All of those are handy for working with magnetic tape
and disks. But it’s also useful for many types of data transfers.

By default, dd reads the standard input and writes to the
standard output. Input and output filenames, and other options
too, are given in an unusual syntax without leading dash (–)
characters.

For instance, to read a floppy disk and write its image to a
file, you could type:

$ dddd iiff==//ddeevv//ffdd00 ooff==ddoossbboooott..iimmgg

2880+0 records in

2880+0 records out

$ llss ––ll ddoossbboooott..iimmgg

–rw–rw–r– ... 1474560 Nov 2 12:59 dosboot.img

The dd command line says, “Reading from the input file /dev/fd0,
write all of the data to the file dosboot.img.” dd doesn’t try to find
lines of data or individual files on the disk; it does a binary

copy of the bytes from first to last. dd always tells you (on the
standard error) how many times it read and wrote data.
Above, it read 2,880 512-byte blocks. If you don’t want to
see this information — or any error messages, either — you
can redirect dd’s standard error to the Linux “bit bucket,”
/dev/null, by adding the Bourne shell operator 2>/dev/
null to the command line.

It’s more efficient to specify a larger block size so the device
drivers do a single read and write. There are lots of other options,
and many of them start with conv=, like conv=unblock to
replace trailing spaces in a block with a newline, and conv=
swap to swap pairs of input bytes (which is needed with some
tapes written on other types of hardware). But we’ll leave that
sort of optimization to you and the dd man page. Let’s look at
some less-obvious uses of this handy utility.

POWER TOOLS

www.linuxmagazine.com Linux Magazine October 2004 3

WHAT’S IN THAT FILE?

The od (“octal dump”) utility displays a file in various for-
mats. It’s great for looking at a non-text file without messing
up your terminal, or for seeing exactly what’s in a text file.

For instance, let’s use the Bourne shell’s quoting operators to
store three lines of text in a file named textfile. Then we’ll dump
it with od –c, which shows data in a character format:

$ eecchhoo ""tteesstt

> 11

> 22"" >> textfile

>

$ oodd ––cc tteexxttffiillee

0000000 t e s t \n 1 \n 2 \n

0000011

Notice the three newlines in the file? A text file from a DOS-
type system would have pairs of \r \n at the end of each
line. The ending number 0000011 shows, in octal, how
many bytes od displayed. (11 octal is 9 decimal, so we saw
9 bytes.)

Next let’s look at the 50 bytes we read from /dev/uran-
dom. We’ll use an octal byte format (the first byte is 31
octal, the second is 62 octal, and so on):

$ oodd ––bb mmyyrraanndd

0000000 031 062 132 063 153 015 075 364 061 070

375 013 365 372 316 270

0000020 256 307 144 345 016 121 162 074 260 151

022 361 116 257 324 251

0000040 263 056 233 123 171 277 274 121 102 221

305 111 332 330 327 213

0000060 053 233

0000062

Using od –c instead shows that some of those random
bytes are legal as characters, and others are not. This tech-
nique is useful for seeing what’s in a file that doesn’t seem
to “look right” on your terminal.

Stupid dd Tricks

Need a file with 100 arbitrary bytes — for testing, for instance?
The Linux device /dev/urandom (available since Linux 1.3.30)
can supply as many pseudo-random bytes as you can read from
it. To get just 100 bytes, set a block size of 1 byte with bs=1
and tell dd to stop after copying 100 “blocks” (here, that’s
100 bytes):

$ dddd iiff==//ddeevv//uurraannddoomm ooff==mmyyrraanndd bbss==11 ccoouunntt==110000

What’s in that myrand file? The od utility can show you. (See the
sidebar “What’s In That File?”)

If you need more-random data, try /dev/random instead.
Reading data from /dev/random can take some time, though,
as the random(4) man page explains. When you read from /dev
/random, set a block size of 1.

Another use for dd is for “wiping” a text file before you delete
it. Simply removing a Linux file (with rm, for instance) only
deletes the inode that points to the data. A cracker with root
access might read the raw disk (with dd!) and find the “delet-
ed” file. We can use dd to write random data over the file
before deleting it. Normally dd truncates a file before writing,
so use conv=notrunc to make it write over the existing
data. Set bs to the file size and count to 1. For example:

% llss ––ll aaffiillee

–rw———– ... 3769 Nov 2 13:41 afile

% dddd iiff==//ddeevv//uurraannddoomm ooff==aaffiillee \\

bbss==33776699 ccoouunntt==11 ccoonnvv==nnoottrruunncc

1+0 records in

1+0 records out

% rrmm aaffiillee

If you want to, you can repeat the “wiping” command sever-
al times with the C shell repeat command, the Z shell repeat
loop, or simply use the history operator !!.

Chunking Data, Part II

If you need to emit chunks of data one-by-one, pausing to do
some operation between each chunk, split can’t do the job. It
only writes data to files, not stopping until all data has been
written. Let’s use dd instead. We’ll also need our knowledge
of how Linux handles a stream of data.

Listing Two in the May 2004 article “Great Command-line
Combinations” (available online at http://www.linux-mag.
com/2004-05/power_01.html) showed a shell loop reading
data from a stream, line by line, until the data had been
exhausted. In that example, we used the read command to
read lines of find output. Now we’d like to use the same tech-
nique to read the output of a program someprog in fixed-size
chunks. The basic bash loop looks like this:

someprog |

while :

do

chunk=$(dd count=1 bs=10 2>/dev/null)

test –z "$chunk" && break

...process $chunk...

done

The shell operator : (a colon), which simply returns a zero
(“true”) exit status, makes an endless while loop that iterates
until it’s stopped by a break command within the loop body.

The bash command substitution operator $(command)
captures the 10 bytes from dd’s standard output, which is then
saved into the shell variable named chunk. We’re throwing
away dd’s standard error, which has messages like 1+0
records in (and any actual errors, too).

Next, the code tests to see whether $chunk is empty and
breaks the loop if it is. It can’t test dd’s exit status (as was done
in the May 2004 article) because dd returns an exit status of
zero whether it has read data or not. A technique like we use
here, though — where dd breaks data into chunks — can be
handy in a lot of cases. Remember to set count=1 to keep
dd from reading all of the data during a single pass of the loop.

Jerry Peek is a freelance writer and instructor who has used
Unix and Linux for over 20 years. He’s happy to hear from
readers; see http://www.jpeek.com/contact.html.

POWER TOOLS

4 October 2004 Linux Magazine www.linuxmagazine.com

POWER TIP: Archive Your Configuration Files

Configuration and setup files can be easy to ignore — and
hard to restore after an error or an application crash. So,
consider making a directory full of symlinks pointing to
important configuration files. Run a script from cron that
makes local copies (into a sibling directory, for instance) of
the symlink targets.

You can also archive all changes to system configuration
files with a system like RCS. However, be sure that your sys-
tem doesn’t change the last-modified timestamp of the con-
figuration files. (You might make a copy of the file and
archive the copy.) A setup like the ci_crontab script,
described in the February 2003 column “Running Jobs
Unattended” (available online at http://www.linux-mag.com/
2003-02/power_01.html) could do the trick.

No matter where Linux data comes from
— a disk, a network, a tape, or

whatever — it’s just a sequence of bytes

