
By Line

2 March 2006 Linux Magazine www.linuxmagazine.com

POWER TOOLS

What’s GNU, Part Six: tar
By Jerry Peek

T his month — in the penultimate article of a series on
new features added to utilities by GNU hackers and oth-

ers — let’s look at changes to the somewhat-under-named
“tape archiver,” or tar. tar handles a lot more than tapes: It
packs files and their metadata (permissions, owner, links and
more) into an archive format that can be compressed and
transferred across a network, fed through a pipe to another
tar running in a different directory, stored on a public server
for people to download — and yes, written to a tape.

Let’s look at GNU tar version 1.13.93 from the Debian
stable distribution.

Keys Versus Options

Some of the original Unix utilities didn’t accept options
starting with a dash (–). Instead, their first argument was
one or more key characters, like options without the dashes.
One of these utilities was dump and another was tar. Some
keys had corresponding arguments — a filename or the
blocking factor, for instance — and the arguments had to
come in the same order as their keys.

For example, to add a tar file on the no-rewind tape device
/dev/nrst8 and use a blocking factor of 20, you’d use the add
flag r, the file flag f, the blocking factor flag b, then the
arguments for the f and b keys, respectively, and finally the
filenames to add. You’d type:

$ tar rfb /dev/nrst8 20 dir1 dir2

GNU tar still accepts those old-time flags, but it also under-
stands normal options starting with single dashes and GNU-
style options starting with two dashes. So, now you can type:

$ tar –r –f /dev/nrst8 –\

b 20 dir1 dir2

tar Archive Formats

Like a lot of early Unix utilities that ran on small machines

with (now) tiny disks, early versions of tar were limited. For
instance, the Version 7 tar limited filename length to 100
characters. This wasn’t just a limitation of the utility; it was
designed into the format of a tar archive.

Since then, various versions have added additional for-
mats. The “Formats” section of the GNU tar info page shows
that it can handle five formats, including two different GNU
formats: one pre-version 1.12, the other after. To top that,
version 1.13.93 creates archives in the (new) GNU format,
but later versions use the POSIX format instead.

However, even if you have the same version of tar
described here, don’t assume that yours renders the same for-
mat. The default format is chosen at compile time. You can
find the default format by reading the end of the output from
tar ––help. Luckily, GNU tar reads five different input
formats automatically (and can also handle compressed
archives, as you’ll see in the next section).

If you’re trying to make portable archives, the best format
might be POSIX. But your guess is as good as any! Just be
aware of the differences, and, if someone else will be open-
ing your archive, consider including a README about the
format. There’s advice in the tar info file section titled
“Making ‘tar’ Archives More Portable.”

Compressed Archives

Compression — with a program like gzip — typically reduces
the size of a file. If you’re saving a tar archive to disk or are
sending it across a slow network, compressing it can make
sense. (Compressing archives you write to tape, however,
can be a bad idea. Because of the way compression algorithms
work, a single bad block in the tape may make the whole
archive unrecoverable.)

Figure One has an example. The first command packs a
directory into a tar file. The second command tries to com-
press the archive with gzip –v, which indicates the reduction
(83.7%) on the standard error after compression has fin-
ished. (Feeding the file to gzip’s standard input with the
shell’s < operator keeps gzip from overwriting the uncom-
pressed file; also, saving gzip ‘s standard output in a different
file makes it easy to compare the original and compressed tar
files.) Finally, du shows the size savings: the original directo-
ry took 80 kilbytes (taking disk block size into account), the
uncompressed tar file took 64 KB, and the compressed tar
file takes 12 KB.

If you’re running out of disk space, consider taring, com-
pressing, and deleting your unused files.

To learn all about GNU tar,
get a gallon of coffee
and read its info file

(type info tar)

www.linuxmagazine.com Linux Magazine March 2006 3

POWER TOOLS

Compressing archives is so common that GNU tar can
run gzip — and other compression utilities, too — as part of
the archiving operation. To create or extract a gzip-ped
archive, add the z flag to the list of tar flags in its first argu-
ment. For example, tar czf archive.tar.gz creates a
gzip-ped archive automatically. (If you like options starting
with dashes, use –z, ––gzip, ––gunzip, or ––ungzip, as
appropriate.)

GNU tar also supports the older compress format. The Z
(uppercase “z”) flag handles that. If you have an old com-
pressed archive (often with an uppercase Z in its name), but
you don’t have the uncompress utility, don’t panic: use a z
(lowercase) flag instead. tar will feed the archive to gzip,
which can detect and handle the old compress format with
no problem.

The bzip2 compression format often (though not always)
does more compression than gzip. In GNU tar 1.13, the j
flag specifies bzip2. Unfortunately, some other versions use I
(uppercase “i”) instead. The long option ––bzip2 is more
portable.

You can also specify an arbitrary compression program
with the option ––use-compress-program=/path/to/
program. The program must accept the –d (“decompress”)
option; if it doesn’t, create a shell script front-end to it.

Pathname Problems Solved

The original tar would restore a file to exactly the pathname
it was stored with. In other words, if you archived the file
/etc/somefile, the absolute pathname (with the leading slash)
meant that somefile could only be restored to /etc/. If you did-
n’t want that, you had a couple of ugly choices. You could
run tar under chroot to temporarily change the location of
the root directory while extracting the files. (You’d also need
to make a copy of the tar binary, plus any shared libraries and
other tools, and the tape device, under this temporary root.)
Or you could copy the archive into a file, then use a binary
editor to change the stored pathnames. (There were proba-
bly other ways, too.)

By default, GNU tar strips the leading slash (/) from path-
names when writing and reading archives. To restore an
archive into the root directory, just type cd / before you run

GNU tar. To make GNU tar work like other implementa-
tions of the utility tar, use the option P, –P, or
––absolute-names.

Avoiding Overwriting

Old tar extracted an archive unconditionally: if a file exist-
ed, it would be overwritten. The w option made tar ask
before extracting each file, but this was a pain if you were
extracting a lot of files and only wanted to prevent over-
writing.

GNU tar gives you some better choices. The options k, –k
and ––keep-old-files don’t overwrite existing files.

The options –K pathname and ––starting-file path-
name tell tar to begin reading the archive from the start but
not to extract any files until it finds pathname. (To see the
order of files in the archive, use tar t, –t, or ––list.)

The ––backup option makes a backup of files before
overwriting them. You can add one of the types of backup:
simple, existing, or numbered. (An earlier article in
this series, from August 2005, explains GNU backup
schemes in detail. It’s available online at http://www.linux-
mag.com/2005-08/power_01.html.)

As as example, tar –x ––backup=simple somedir
extracts the directory somedir. If it’s going to extract a file
named foo and that file already exists, tar renames foo to foo~
before extracting foo from the archive.

You can change the default suffix from ~ to something else
with ––suffix= ‘X’, where X is the suffix you want to use.

Choosing Files

Original tar would extract the files or directories you gave as
command-line arguments. If you named a directory, it would
extract all entries from the directory (though you could also
specify individual files from a directory, like dir/file1 dir/file2).
Choosing certain types of files — for instance, all filenames
ending in .c — wasn’t trivial. Original tar couldn’t match
wildcards like *.c against the contents of an archive. You
could use a fairly ugly hack, though: filter a listing of the
archive’s contents through grep, then use the grep output as
command-line arguments to another tar.

For example, if your tape was mounted on the default tape
drive (so you didn’t need the f option), you could extract all
.c files this way:

FIGURE ONE: Testing the compression of a tar archive

$ tar cf /tmp/sortcol.tar 0602_gnus5_sort

$ gzip –v < /tmp/sortcol.tar > /tmp/sortcol.tar.gz

83.7%

$ du 0602_gnus5_sort /tmp/sortcol.tar*

80 0602_gnus5_sort

64 /tmp/sortcol.tar

12 /tmp/sortcol.tar.gz

If someone else will be opening
your archive, consider including a
README about the format

4 March 2006 Linux Magazine www.linuxmagazine.com

POWER TOOLS

tar xv `tar t | grep ‘\.c$’`

The first tar, run by command substitution (inside the back-
quotes), yields a complete table of contents; the grep yields
all names ending with .c. The next tar would extract those
files and list their names as it did. (If there were too many .c
files, the command line could become too long; you’d need
to use another method.)

Some later versions of tar accepted an X option with an
argument of a filename containing a list of pathnames to
exclude from the archive. The similar I option (called T in
GNU tar) requires a list of files and directories to include —
in addition to any files named on the command line. This
“include” listing gets around the problem of naming too
many files on the command line (command-lines had length
limits on older systems).

GNU tar supports inclusionary and exclusionary lists.
Furthermore, options like ––wildcards and ––no-wild-
cards control wildcard matching in the exclude file, and
––exclude=pattern lets you specify exclusionary wild-
cards on the command-line.

Also, check out options like ––after-date and
––newer to choose files by date.

Which Occurrence?

In the days before big hard disks, archives were usually writ-
ten to reels of tape. A tape could be appended to, so a tape
might have multiple copies of the same file. As an example,
the following series of commands add two versions of foo to
the same (disk) archive:

$ echo test file > foo

$ tar cf foo.tar foo

$ echo more data >> foo

$ tar rf foo.tar foo

$ tar tvf foo.tar

-rw ... 10 2005-12-04 17:08:34 foo

-rw ... 20 2005-12-04 17:08:57 foo

If you tell tar to extract a file — for instance, tar x some-
file — it reads the whole archive, extracting every occur-
rence of somefile. In that case, you’ll end up with the last
occurrence of somefile.

On a tape drive, you could choose which occurrence by
using utilities like mt and dd. You could also use the dirty
hack of a command like tar xv somefile, watching the
verbose output until tar had extracted the occurrence you
wanted, then killing tar with Control-C.

GNU tar has made this a lot easier. The option —occur-
rence=num extracts the numth occurrence of a file. Or, by
default, —occurrence extracts the first occurrence.

Comparing Disk Files to Archive Files

With the original tar, if you wondered whether a disk file was
different than an archived file, you’d need to extract the
archive somewhere safe and then run diff.

GNU tar has the options d, –d, ––diff, and ––compare.
These options compare an archived file to the current ver-
sion on disk, and can tell you whether a file is longer or
shorter, whether the file’s contents have changed (it’s the
same size but the contents are different), and if its last-mod-
ification time has changed.

In the next example, two of the files in the archive chk.tar
are different than the disk files in the current directory:

$ tar df chk.tar

chk: Mod time differs

chk: Size differs

chk.1: Mod time differs

chk.1: Contents differ

If you need to know more, you can use the tar options O, –O
(both an uppercase letter “o”) or ––to-stdout to extract
an archived file to a pipe, then compare it with diff. For
instance, here line 5 of the archived file chk ends with
$subj but the disk file ends with $subject:

$ tar xOf chk.tar chk | diff – chk

5c5

< echo “$file $size $subj”

—-

> echo “$file $size $subject”

There’s Much More

For a quick summary of tar options and operation, type tar
––help. To learn all about GNU tar, get a gallon of coffee
and read its info file (type info tar). As you’ll see here, there’s
much more than anyone could cover in three pages.

Jerry Peek is a freelance writer and instructor who has used
Unix and Linux for 25 years. He’s happy to hear from readers;
see http://www.jpeek.com/contact.html.

GNU tar has the options d, –d,
––diff, and ––compare. These options

compare an archived file to the
current version on disk

