
ImageMagick, Part One
By Jerry Peek

14 June 2006 Linux Magazine www.linuxmagazine.com

POWER TOOLS

J ust in time for your summer vacation photos (in the
Northern Hemisphere, anyway), let’s look at image hack-

ing with ImageMagick (http://www.imagemagick.org/).
ImageMagick (or IM for short) is a package of programs

for creating and manipulating images: photographs, vector
and raster drawings, and more. It’s been in development for
almost twenty years, and a lot has changed since it was first
posted to comp.archives on Usenet in 1990. The package is
freely-redistributable, although some parts of the code came
from other packages and have different license terms. See
http://studio.imagemagick.org/script/license.php and http://
studio.imagemagick.org/script/notice.php.

Most of IM’s tools work from the command-line and also,
of course, from scripts and anywhere else you can run a pro-
gram. ImageMagick has multiple APIs, too — for C, Ch,
C++,Java, Lisp, Pascal, Perl, PHP, Python, Ruby, and Tcl/Tk
— but we’ll cover the command-line here.

Not everything you’d want to do to an image is easy to speci-
fy by typing text on a command-line, of course. But for some jobs,
especially repetitive tasks like resizing or annotating a series of
images, tools like IM are fastest. IM also has many more features
than simpler GUI tools. There are Windows and Macintosh
versions of IM, and one for Cygwin, too.

This month let’s cover the basics and try some useful exam-
ples. Next month, we’ll go into more detail. Still, there’s no
way we can cover more than a small part of this feature-rich
package. (The sidebar “Netpbm” describes a similar package.)

Editing Images from the Command-Line?

Why would you want to use the command-line if there’s a
free, interactive, GUI tool like The GIMP that’s also pro-
grammable? (For more about programming The GIMP, see
http://www.linux-mag.com/2002-01/power_01.html.)

➤ IM’s large selection of APIs make it easy to edit images
from an application, including from a Web server or other
on-the-fly image processing program. IM’s tools are small-
er and faster to load than a large application like GIMP.

➤ IM lets you make sophisticated choices of exactly how your
image is processed, something that most GUI editors don’t.
For instance, IM has a big variety of resampling algo-
rithms, so you can choose the best one for a particular image.
You can also set the image depth (the number of bits per
pixel); choose the number of colors; choose the way that
pixels, and bytes in each pixel, are stored; and more.

There’s no need to make all of these choices when you
process an image, but the capabilities are available if you
need them. If you can specify the job exactly — for instance,
scaling an image from one size to another — using the com-
mand-line can be faster than opening an interactive editor.
That’s especially true when you’re processing a series of
images, such as creating image thumbnails for a Web page.

ImageMagick Tools

The latest version of IM (as of this writing) is 6.2.6-5. Some
major binary package distributions lag behind the bleeding edge.
To see what version you have, add the option –version to
any of the IM utilities (for example, convert –version).

To get the very latest version, go to http://www.imagemagick.
org/. You may also need to install a number of delegates, programs
to handle various image types. See the README.txt file in
the source tree for information.

ImageMagick has ten command-line utilities. We’ll look
at only a few this month.

➤ convert is probably the most-used. It reads and processes
input files, then creates an output file. It can convert
formats, resize, crop, and do much more.

➤ composite overlays one image onto another. Images with
transparent pixels (an alpha channel) are handled correctly.

➤ display is an interactive tool that displays and edits images
under the X Window System.

Some fairly short HTML documentation is installed with IM.

The Command-Line (Important!)

Most of IM’s power is in its more than 100 command-line
options. The options are used in a way very different from
traditional Linux/Unix utilities.

Beginning with IM version 6, the order of command-line
options is crucial. The command-line is read from left to right,
and you must specify files and options in the order that IM
should perform the corresponding operations. (IM also tries
to handle pre-V6 ordering, but that wasn’t as precise.)

A few of the options provide overall settings, and those
options typically come first. Other options (better called
operators) and arguments come in the order they should take
effect. The last argument is usually an output filename. For

0606 Power 4/26/06 3:24 AM Page 14

instance, when creating
an output image, set its
size first, then read the
input images, then man-
ipulate the result.

As an example, the
command-line at the bot-
tom of Figure One creates
three vertical rectangles
in memory, each 20 pix-
els wide by 40 pixels
high (xc: followed by a
color name or specifica-
tion makes a single-color
image), appends the three
rectangles into a single
image, and writes the re-
sult to a file.

The command in Fig-
ure Two creates two rec-
tangles, appends them
to become a single image,
then rotates that image
by 90 degrees. After that,
a third rectangle is cre-
ated and appended, and
the result is written to
out2.png.

Figure Three uses the
same command-line as
Figure One, but adds
–rotate 180 after the
+append operator. Be-
cause the +append has
joined all three rectan-
gles, the –rotate rotates
the entire image.

When you read more
than one image into
memory, you’re actually

creating an image sequence that you can manipulate in a lot
of ways, globally (to each image in the sequence) or individ-

ually (just one of the images). There’s much more informa-
tion about command-line ordering and the image sequence
in Anthony Thyssen’s IM6 basics page, http://www.cit.gu.
edu.au/~anthony/graphics/imagick6/basics/.

Format Conversion

IM can handle a lot of file formats. The formats it supports
are chosen when you build it.

As was said, the convert utility reads the command-line
from left to right. All filenames except the last are opened
and read into memory (as an image sequence). The result,
after all processing, is written into the last filename.

One of the simplest uses of convert is to convert an exist-
ing image from one format to another without modifying it.
Give two filenames: the one to read and the one to write. To
convert a BMP file, say icon.bmp, into PNG format, do:

$ convert icon.bmp icon.png

Not all formats are created equal, as the sidebar “File
Formats” explains. If you aren’t sure which format to use, do
some studying and experimentation. IM is great for this: it’s
easy to produce a lot of versions in a short time.

Listing One shows a loop that converts an image to three other
formats and runs the IM display utility in the background to
show each output file. ls –l shows the image sizes.

Figure Four shows the three display windows. To magnify
an image or do any of a number of operations, left-click on the
display window for a menu. Typing q in a window closes it.

Image Composites

ImageMagick is great for processing a series of images in the
same way. Pick the parameters, then use a shell loop to run
the same command on each image.

Labeling images with a logo, copyright, or other annota-
tion is one example. The IM convert utility can create text

www.linuxmagazine.com Linux Magazine June 2006 15

POWER TOOLS

NETPBM

Another command-line image editing package is Netpbm. It
has a more-Unix-like design: a series of utility programs that
you usually use in a series, typically combined with pipes. See
the August 2004 column “Fix Images Fast with Netpbm,”
online at http://www.linux-mag.com/2004-08/power_01.
html, for more information.

FIGURE TWO: Creating two col-
ored rectangles, rotating the
resulting, and appending a third

FIGURE THREE: Rotating the
image created in Figure One

$ convert –size 20x40 \

xc:blue xc:white +append \

–rotate 90 xc:red \

+append out2.png

FIGURE ONE: Create three col-
ored rectangles

$ convert –size 20x40 \

xc:blue xc:white xc:red \

+append out1.png

$ convert –size 20x40 \

xc:blue xc:white xc:red \

+append –rotate 180 out3.png

LISTING ONE: Trying different image file formats

$ for type in gif jpg png

do

> convert logo.tif logo.$type

> display logo.$type &

done

[1] 10302

[2] 10304

[3] 10306

$ ls –l logo.*

-rw-r—r— ... 15015 ... logo.gif

-rw-r—r— ... 9864 ... logo.jpg

-rw-r—r— ... 36443 ... logo.png

-rw-r—r— ... 291126 ... logo.tif

0606 Power 4/26/06 3:24 AM Page 15

creo

16 June 2006 Linux Magazine www.linuxmagazine.com

POWER TOOLS

images with transparent backgrounds (alpha channels) that
work well. (Save these in PNG format; it supports trans-
parency.) The IM composite utility overlays images.

It may be easier to create logos in an interactive editor.
Figure Five shows part of a logo with text and graphics in a
GIMP window, magnified 400% to make pixel-by-pixel edit-
ing easier. The checkerboard background helps you see
transparent and partly-transparent pixels.

The logo, in toplogo.png, is 320 pixels wide by 49 high. It
should be on top, so it goes first on the command-line. The
image underneath, which is the second file on the com-
mand-line, is image.png, at 640x512 pixels; the output file
will be the same size. The output filename, image_logo.jpg,
comes last. Figure Six shows the result.

The –gravity option controls placement of the top
image. The bottom of the image is South, the right is East,
and the bottom right (the location for the logo) is
SouthEast. So the command-line is:

$ composite –gravity SouthEast \

toplogo.png image.png image_logo.jpg

More to Come

We’ve hardly scratched the surface of ImageMagick. Next
month we’ll dig in more.

In the meantime, a great place to learn much more is
Anthony’s IM example pages at http://www.cit.gu.edu.au/
~anthony/graphics/imagick6/.

Contact Jerry Peek at http://www.jpeek.com/contact.html.

FILE FORMATS

There are lots of graphic file formats. Different formats are good
for different types of images. Understanding that can make a big
difference in the size, quality, and usability of your images.

Here are some basics:

➤ GIF is good for line art, text, and other images with sharp
edges and a limited number of colors. (The patent on LZW —
the compression method often used in GIFs, which kept peo-
ple from using GIFs freely — has expired in the United States.)

➤ JPEG (actually, JFIF) is good for photos. It uses “lossy” com-
pression that removes detail from the image. This saves disk
space, but saving as JPEG, especially re-saving, or using high
compression, can degrade the quality of an image. For
instance, text that’s razor-sharp in a GIF can look fuzzy when
converted to JPEG. If your camera makes JPEGs that you’ll be
editing, set it to save with the highest JPEG quality, or save in
a lossless format, such as TIFF or RAW. While editing, save
intermediate files in a lossless format like PNG; only re-save
in JPEG when you’ve finished your edits.

➤ TIFF saves images pixel-by-pixel. (Though it can use various
types of compression, it generally doesn’t.) This makes large
image files that preserve detail. However, web browsers gen-
erally don’t display TIFF files.

➤ PNG is a format that handles both line art and photos. It uses
lossless compression, so you don’t lose detail like JPEG does.
Line-art PNG files can be near the size of GIFs, but PNG pho-
tos are often a lot larger than JPEGs. Unfortunately, Internet
Explorer doesn’t completely support PNG.

FIGURE FOUR: ImageMagick display windows

FIGURE FIVE: A logo with a transparent background

FIGURE SIX: Logo overlaid on image

0606 Power 4/26/06 3:24 AM Page 16

creo

