
ImageMagick, Part Two
By Jerry Peek

2 July 2006 Linux Magazine www.linuxmagazine.com

POWER TOOLS

Last month’s column introduced ImageMagick (IM), a com-
mand-line tool that’s adept at converting images from

one format to another. (In fact, that’s why its main program is
named convert.) But IM is well-suited to other image manipula-
tion tasks, too. You saw some of those additional capabilities
last month. This month, let’s dig in and discover even more.

File Formats Revisited

Last month’s “Power Tools” looked at the differences between
the PNG, JPEG, GIF, and TIFF image file formats. If you’re
planning to spend a considerable amount of time working
with images and want high quality, there’s a lot to know.
Anthony Thyssen’s Web page, “Common Image File Formats”
(http://www.cit.gu.edu.au/~anthony/graphics/imagick6/for-
mats/) is an excellent place to start. The page discusses for-
mats and how IM handles them.

Most image file formats store more than pixels (or vectors).
For instance, your digital camera likely stores a lot of EXIF
data along with the image. This data can include the date
and time you took the photo, camera settings, and more.

When you edit an image, this metadata may or may not be
preserved. An image editing program might also preserve data
that becomes misleading — for instance, by not revising the
“image generated” date to the time you converted the image.

You can see an image’s metadata with IM’s identify utility.
This is handy not only for reference; you can also use the meta-
data in scripts that handle images. Indeed, the data has a lot
of uses. As a simple example, IM can read the date and time that
a photo was taken, then write that as text on top of the image.
This way, everyone can tell when the photo was taken. (You
can keep an original, unannotated image for printing.)

identify tells more about an image than just EXIF data. It
tells you the current file size in bytes. Its –verbose option
gives yet more info, including a textual version of the image
histogram (if there are less than 1,024 colors, that is). The
–format option lets you choose the data you want. Listing
One has an example.

Notice the comment. This is one place you can add infor-
mation to the image, say, to record where you took the photo
and how to contact you.

Use convert –comment to add or change the comment.
You can embed other image attributes in the comment, if
you’d like, by using the format characters listed in the IM
documentation for the –format option. Of course, you can
also use shell command substitution to include the output of
other utilities. See Listing Two.

date interprets its %Y format immediately, so the shell pass-
es only the %d format string to identify.

Adding a comment to an original JPEG file has a side-effect:
adding the annotation re-encodes the image, reducing its
quality somewhat. As mentioned last month, “lossiness” is
inherent in the JPEG format, so it’s best to keep images in
another format until you make a final JPEG, or at least to do
all of your IM editing in a single pass. convert can do multiple
operations in one pass. (The jpegtran utility — which isn’t part
of ImageMagick — can do some JPEG operations losslessly.
However, it only works under certain conditions. You can
find jpegtran and its documentation at http://www.ijg.org/.)

Hiding Image Data

Image metadata can be handy for you, but it also can be a
privacy problem if you post your images online. For instance,
your boss might see where you really were on June 15th, or a

LISTING ONE: Use the ImageMagick utility identify to
show image data

$ identify image.jpg

image.jpg JPEG 640x512 640x512+0+0 DirectClass

5e+01kb

$ identify –verbose image.jpg

Image: image.jpg

...

Colors: 73781

Resolution: 2900x2900

Units: PixelsPerInch

Compression: JPEG

Quality: 75

Comment: Copyright (c) 2005 by Jerry Peek,

jpeek@jpeek.com

...

$ identify –format “%i –– %c” image.jpg

image.jpg –– Copyright (c) 2005 by Jerry Peek,

jpeek@jpeek.com

LISTING TWO: Adding and displaying an image comment

$ convert –comment \

“Copyright `date +%Y` by Joe Smith. Master is

in %d on `hostname`.” \

~/img/123.png ~/img/123_final.jpg

$ identify –format “%c” ~/img/123_final.jpg

Copyright 2006 by Joe Smith. Master is in

/home/joe/img on foo.edu.

thief might find that you have a high-end Nikon SLR with
an expensive lens (your camera may put its model number
and lens type into the EXIF data). This can happen on a
photo site like Flickr that makes it easy to see EXIF data. But
it’s also true if you post the plain images somewhere else;
someone can download them and read the EXIF info.

The convert option –strip strips any profiles or com-
ments from the image. Happily, this doesn’t remove infor-
mation that’s inherent in the image, like the JPEG quality.
(After stripping the image, identify –verbose will still
show you lots of information.)

An esoteric IM operator is composite –stegano. It
uses steganography to hide a “watermark” image at a certain
place within another image. Later, if you want to know
whether a particular image is identical, display stegano:
recovers and shows the hidden image. (Steganography can
also be used to hide a “secret message” text image or any
image within another innocuous-looking image.)

Steganography might sound like a good way to see
whether someone has copied one of your images, but any
manipulation of the” steganographed” image, such as resiz-
ing, can destroy the watermark. Adding the watermark may
also cut the image quality. And extracting it can take plen-
ty of CPU time.

Figure One shows the process of hiding a small logo file, 240
pixels wide by 36 high, in a 640x480-pixel JPEG file. The image
logo.png is hidden in a new file named out.png at a location
beginning 44 pixels from the start of the image image.jpg:

$ composite –stegano 44 logo.png image.jpg

out.png

$ identify out.png

out.png PNG 640x480 DirectClass 768kb 0.060u

0:01

Now we have a 640x480-pixel PNG image, out.png, that
looks identical to the input file, image.png— even when
magnified.

To see the hidden image, pass the logo dimensions and its
starting point as width x height x start to the IM display utili-
ty. Precede the filename with stegano:, like this:

$ display -size 240x36+44 stegano:out.png

Figure Two shows the process. Instead of viewing the hidden
logo, you can extract it to a file named hidden.png with a
command like convert –size 240x36+44 stegano

:out.png hidden.png.

Resizing Images

If you’ve ever looked at a magazine or newspaper photo with

a magnifier, you know that the image is made of dots arranged
in a grid pattern. If you try to enlarge the image on a photo-
copier, or some other way, you won’t get you more detail. It
simply spreads those same dots. The image gets bigger, but it
also gets fuzzier.

Digital images (raster-format images, that is) are about the
same. Once you’ve stored the original pixels, they’re all you
have. Enlarging the image means either showing it at a lower
resolution (spreading those same pixels over a greater dis-
tance), or making the same or higher resolution by calculat-
ing new pixels to fill the gaps between the original (now
spread-apart) pixels.

Neither of those typically make an image that looks every
bit as good as the original. (Shrinking an image is easier to
do smoothly.)

There are many algorithms for resizing images. Each cal-
culates what pixels should be shown, at each spot in the grid,
to make an image that looks acceptable. ImageMagick
comes with fifteen different resizing filters. You can choose
one by giving its name with the –filter operator before
the –resize operator. Not all filters work with all image
formats, though. For instance, the “Mitchell” filter works
with with images that support a palette. If you don’t specify
a filter, IM picks one.

As you resize, you’ll probably want to preserve an image’s
aspect ratio, its ratio of width to height. Otherwise, objects in
the image change shape: circles become ovals, and people
can look taller or wider.

By default, when you give a new image size to IM, such as

www.linuxmagazine.com Linux Magazine July 2006 3

POWER TOOLS

FIGURE ONE: Hiding a logo in an image with steganography

FIGURE TWO: Extracting a logo hidden using steganography

4 July 2006 Linux Magazine www.linuxmagazine.com

POWER TOOLS

convert foo.jpg

–resize 640x480, that
width and height are
treated as maximum val-
ues; IM preserves the
aspect ratio and get as
close to that size as pos-
sible. Appending a ! flag,
as in –resize

640x480!, tells IM to
make exactly that size
— even if it changes
the aspect ratio. (The
documentation explains

more resizing flags: <, >, @, and %.)
Let’s look at the various filters in the next section.

Montage and More

This section is be a grab-bag of IM techniques to create
images, use filters to enlarge them, and arrange the resulting
fifteen images in a montage pattern. You can use the same
technique to arrange photos, or thumbnails, for display in a
single larger image.

First, let’s make a box with four 2x2-pixel colored squares.
The IM parenthesis operators (escape them so your shell
won’t interpret them) let you make an image “on the side”
that’s handled separately from the rest of the image sequence.
The command in Figure Three makes a row in each set of
parentheses, using the +append operator shown last month.
The command then joins the two rows with a final –append
operator, which joins images vertically, and saves the result
to the file sq.png. The end-result is shown in Figure Four.

Next, let’s resize the small box greatly, using each filter once.
(This example was adapted from Anthony Thyssen’s.) Listing
Three shows the setup. The filter names are stored in a bash array.
A for loop enlarges sq.png from 4x4 pixels to 200x200,
using each filter, creating output files named for each filter.

Here, the filters are ordered from “blurriest” to “sharpest,”
though that’s not a very exact description. Notice that some
filters, like Hamming and Triangle, make straight edges;
others vary the intensity of a color. When you have an impor-
tant resizing job to do, comparisons like this can help you
pick the best filter for a particular image.

After creating the fifteen enlarged images, the bash param-

eter expansion operator ${ parameter / pattern / string} tacks
.png onto the end of each filter name; those names are passed
onto the IM montage utility.

The montage options let you control whether each image
has a label, a frame, how many are in the grid, and more.
Here, a label containing the filename is added under each
image, making a 5-pixel frame, putting 5 images in each row,
and adding a drop shadow. The –geometry option tells
montage to add 10 pixels of border space around each image;
specifying a border this way also tells montage to show the
images at full-size instead of shrinking them.

As with other IM utilities, montage –help gives a list of
options; there’s more help in the HTML documentation files
installed with IM.

The shadows are semi-transparent, so the result should be
saved in a file format that supports partial transparency.
Again, PNG is a good choice. Figure Five shows the result.

Coming Next Month

Next month’s “Power Tools” will use IM tools to view the
image data as a three-channel histogram to see if it’s well-
exposed, use IM tools to improve image, and more.

Email Jerry Peek at http://www.jpeek.com/contact.html.

FIGURE THREE: Creating the grid of Figure Four

$ convert -size 2x2 \

> \(xc:red xc:green +append \) \

> \(xc:blue xc:white +append \) \

> -append sq.png

LISTING THREE: Demonstrating resizing filters

$ filters=(Cubic Quadratic Gaussian Bessel \

> Hamming Mitchell Triangle Lanczos Sinc \

> Catrom Hermite Hanning Blackman Box Point)

$ for filter in ${filters[*]}

> do convert sq.png –filter $filter \

–resize 200x200 $filter.png

> done

$ montage –label ‘%f’ –frame 5 –tile 5 \

–shadow –geometry +10+10

${filters[*]/%/.png} examples.png

FIGURE FIVE: Figure Four resized with fifteen different filters

FIGURE FOUR: The test grid
image

